3.7.14 \(\int \frac {(a+b x)^{3/2} (c+d x)^{3/2}}{x^5} \, dx\) [614]

3.7.14.1 Optimal result
3.7.14.2 Mathematica [A] (verified)
3.7.14.3 Rubi [A] (verified)
3.7.14.4 Maple [B] (verified)
3.7.14.5 Fricas [A] (verification not implemented)
3.7.14.6 Sympy [F]
3.7.14.7 Maxima [F(-2)]
3.7.14.8 Giac [B] (verification not implemented)
3.7.14.9 Mupad [F(-1)]

3.7.14.1 Optimal result

Integrand size = 22, antiderivative size = 201 \[ \int \frac {(a+b x)^{3/2} (c+d x)^{3/2}}{x^5} \, dx=\frac {3 (b c-a d)^3 \sqrt {a+b x} \sqrt {c+d x}}{64 a^2 c^2 x}-\frac {(b c-a d)^2 \sqrt {a+b x} (c+d x)^{3/2}}{32 a c^2 x^2}-\frac {(b c-a d) \sqrt {a+b x} (c+d x)^{5/2}}{8 c^2 x^3}-\frac {(a+b x)^{3/2} (c+d x)^{5/2}}{4 c x^4}-\frac {3 (b c-a d)^4 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{64 a^{5/2} c^{5/2}} \]

output
-1/4*(b*x+a)^(3/2)*(d*x+c)^(5/2)/c/x^4-3/64*(-a*d+b*c)^4*arctanh(c^(1/2)*( 
b*x+a)^(1/2)/a^(1/2)/(d*x+c)^(1/2))/a^(5/2)/c^(5/2)-1/32*(-a*d+b*c)^2*(d*x 
+c)^(3/2)*(b*x+a)^(1/2)/a/c^2/x^2-1/8*(-a*d+b*c)*(d*x+c)^(5/2)*(b*x+a)^(1/ 
2)/c^2/x^3+3/64*(-a*d+b*c)^3*(b*x+a)^(1/2)*(d*x+c)^(1/2)/a^2/c^2/x
 
3.7.14.2 Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.80 \[ \int \frac {(a+b x)^{3/2} (c+d x)^{3/2}}{x^5} \, dx=\frac {(b c-a d)^4 \left (\frac {\sqrt {a} \sqrt {c} (a+b x)^{7/2} \sqrt {c+d x} \left (3 c^3-\frac {11 a c^2 (c+d x)}{a+b x}-\frac {11 a^2 c (c+d x)^2}{(a+b x)^2}+\frac {3 a^3 (c+d x)^3}{(a+b x)^3}\right )}{(b c x-a d x)^4}-3 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {c+d x}}{\sqrt {c} \sqrt {a+b x}}\right )\right )}{64 a^{5/2} c^{5/2}} \]

input
Integrate[((a + b*x)^(3/2)*(c + d*x)^(3/2))/x^5,x]
 
output
((b*c - a*d)^4*((Sqrt[a]*Sqrt[c]*(a + b*x)^(7/2)*Sqrt[c + d*x]*(3*c^3 - (1 
1*a*c^2*(c + d*x))/(a + b*x) - (11*a^2*c*(c + d*x)^2)/(a + b*x)^2 + (3*a^3 
*(c + d*x)^3)/(a + b*x)^3))/(b*c*x - a*d*x)^4 - 3*ArcTanh[(Sqrt[a]*Sqrt[c 
+ d*x])/(Sqrt[c]*Sqrt[a + b*x])]))/(64*a^(5/2)*c^(5/2))
 
3.7.14.3 Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.03, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {105, 105, 105, 105, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x)^{3/2} (c+d x)^{3/2}}{x^5} \, dx\)

\(\Big \downarrow \) 105

\(\displaystyle \frac {3 (b c-a d) \int \frac {\sqrt {a+b x} (c+d x)^{3/2}}{x^4}dx}{8 c}-\frac {(a+b x)^{3/2} (c+d x)^{5/2}}{4 c x^4}\)

\(\Big \downarrow \) 105

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \int \frac {(c+d x)^{3/2}}{x^3 \sqrt {a+b x}}dx}{6 c}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 c x^3}\right )}{8 c}-\frac {(a+b x)^{3/2} (c+d x)^{5/2}}{4 c x^4}\)

\(\Big \downarrow \) 105

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \left (-\frac {3 (b c-a d) \int \frac {\sqrt {c+d x}}{x^2 \sqrt {a+b x}}dx}{4 a}-\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 a x^2}\right )}{6 c}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 c x^3}\right )}{8 c}-\frac {(a+b x)^{3/2} (c+d x)^{5/2}}{4 c x^4}\)

\(\Big \downarrow \) 105

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \left (-\frac {3 (b c-a d) \left (-\frac {(b c-a d) \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}}dx}{2 a}-\frac {\sqrt {a+b x} \sqrt {c+d x}}{a x}\right )}{4 a}-\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 a x^2}\right )}{6 c}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 c x^3}\right )}{8 c}-\frac {(a+b x)^{3/2} (c+d x)^{5/2}}{4 c x^4}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \left (-\frac {3 (b c-a d) \left (-\frac {(b c-a d) \int \frac {1}{\frac {c (a+b x)}{c+d x}-a}d\frac {\sqrt {a+b x}}{\sqrt {c+d x}}}{a}-\frac {\sqrt {a+b x} \sqrt {c+d x}}{a x}\right )}{4 a}-\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 a x^2}\right )}{6 c}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 c x^3}\right )}{8 c}-\frac {(a+b x)^{3/2} (c+d x)^{5/2}}{4 c x^4}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {3 (b c-a d) \left (\frac {(b c-a d) \left (-\frac {3 (b c-a d) \left (\frac {(b c-a d) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2} \sqrt {c}}-\frac {\sqrt {a+b x} \sqrt {c+d x}}{a x}\right )}{4 a}-\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 a x^2}\right )}{6 c}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 c x^3}\right )}{8 c}-\frac {(a+b x)^{3/2} (c+d x)^{5/2}}{4 c x^4}\)

input
Int[((a + b*x)^(3/2)*(c + d*x)^(3/2))/x^5,x]
 
output
-1/4*((a + b*x)^(3/2)*(c + d*x)^(5/2))/(c*x^4) + (3*(b*c - a*d)*(-1/3*(Sqr 
t[a + b*x]*(c + d*x)^(5/2))/(c*x^3) + ((b*c - a*d)*(-1/2*(Sqrt[a + b*x]*(c 
 + d*x)^(3/2))/(a*x^2) - (3*(b*c - a*d)*(-((Sqrt[a + b*x]*Sqrt[c + d*x])/( 
a*x)) + ((b*c - a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x 
])])/(a^(3/2)*Sqrt[c])))/(4*a)))/(6*c)))/(8*c)
 

3.7.14.3.1 Defintions of rubi rules used

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 105
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f)))   Int[(a 
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, 
e, f, m, p}, x] && EqQ[m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] 
 ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 
3.7.14.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(592\) vs. \(2(163)=326\).

Time = 1.55 (sec) , antiderivative size = 593, normalized size of antiderivative = 2.95

method result size
default \(-\frac {\sqrt {b x +a}\, \sqrt {d x +c}\, \left (3 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{4} d^{4} x^{4}-12 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{3} b c \,d^{3} x^{4}+18 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{2} b^{2} c^{2} d^{2} x^{4}-12 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a \,b^{3} c^{3} d \,x^{4}+3 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) b^{4} c^{4} x^{4}-6 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a^{3} d^{3} x^{3}+22 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a^{2} b c \,d^{2} x^{3}+22 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a \,b^{2} c^{2} d \,x^{3}-6 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, b^{3} c^{3} x^{3}+4 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a^{3} c \,d^{2} x^{2}+88 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a^{2} b \,c^{2} d \,x^{2}+4 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a \,b^{2} c^{3} x^{2}+48 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a^{3} c^{2} d x +48 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a^{2} b \,c^{3} x +32 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a^{3} c^{3} \sqrt {a c}\right )}{128 a^{2} c^{2} \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, x^{4} \sqrt {a c}}\) \(593\)

input
int((b*x+a)^(3/2)*(d*x+c)^(3/2)/x^5,x,method=_RETURNVERBOSE)
 
output
-1/128*(b*x+a)^(1/2)*(d*x+c)^(1/2)/a^2/c^2*(3*ln((a*d*x+b*c*x+2*(a*c)^(1/2 
)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^4*d^4*x^4-12*ln((a*d*x+b*c*x+2*(a*c) 
^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^3*b*c*d^3*x^4+18*ln((a*d*x+b*c* 
x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^2*b^2*c^2*d^2*x^4-12*l 
n((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a*b^3*c^3*d 
*x^4+3*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*b^4 
*c^4*x^4-6*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*a^3*d^3*x^3+22*(a*c)^(1/2)* 
((b*x+a)*(d*x+c))^(1/2)*a^2*b*c*d^2*x^3+22*(a*c)^(1/2)*((b*x+a)*(d*x+c))^( 
1/2)*a*b^2*c^2*d*x^3-6*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*b^3*c^3*x^3+4*( 
(b*x+a)*(d*x+c))^(1/2)*(a*c)^(1/2)*a^3*c*d^2*x^2+88*((b*x+a)*(d*x+c))^(1/2 
)*(a*c)^(1/2)*a^2*b*c^2*d*x^2+4*((b*x+a)*(d*x+c))^(1/2)*(a*c)^(1/2)*a*b^2* 
c^3*x^2+48*((b*x+a)*(d*x+c))^(1/2)*(a*c)^(1/2)*a^3*c^2*d*x+48*((b*x+a)*(d* 
x+c))^(1/2)*(a*c)^(1/2)*a^2*b*c^3*x+32*((b*x+a)*(d*x+c))^(1/2)*a^3*c^3*(a* 
c)^(1/2))/((b*x+a)*(d*x+c))^(1/2)/x^4/(a*c)^(1/2)
 
3.7.14.5 Fricas [A] (verification not implemented)

Time = 1.26 (sec) , antiderivative size = 562, normalized size of antiderivative = 2.80 \[ \int \frac {(a+b x)^{3/2} (c+d x)^{3/2}}{x^5} \, dx=\left [\frac {3 \, {\left (b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}\right )} \sqrt {a c} x^{4} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {a c} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) - 4 \, {\left (16 \, a^{4} c^{4} - {\left (3 \, a b^{3} c^{4} - 11 \, a^{2} b^{2} c^{3} d - 11 \, a^{3} b c^{2} d^{2} + 3 \, a^{4} c d^{3}\right )} x^{3} + 2 \, {\left (a^{2} b^{2} c^{4} + 22 \, a^{3} b c^{3} d + a^{4} c^{2} d^{2}\right )} x^{2} + 24 \, {\left (a^{3} b c^{4} + a^{4} c^{3} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{256 \, a^{3} c^{3} x^{4}}, \frac {3 \, {\left (b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}\right )} \sqrt {-a c} x^{4} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {-a c} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b c d x^{2} + a^{2} c^{2} + {\left (a b c^{2} + a^{2} c d\right )} x\right )}}\right ) - 2 \, {\left (16 \, a^{4} c^{4} - {\left (3 \, a b^{3} c^{4} - 11 \, a^{2} b^{2} c^{3} d - 11 \, a^{3} b c^{2} d^{2} + 3 \, a^{4} c d^{3}\right )} x^{3} + 2 \, {\left (a^{2} b^{2} c^{4} + 22 \, a^{3} b c^{3} d + a^{4} c^{2} d^{2}\right )} x^{2} + 24 \, {\left (a^{3} b c^{4} + a^{4} c^{3} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{128 \, a^{3} c^{3} x^{4}}\right ] \]

input
integrate((b*x+a)^(3/2)*(d*x+c)^(3/2)/x^5,x, algorithm="fricas")
 
output
[1/256*(3*(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a 
^4*d^4)*sqrt(a*c)*x^4*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 
 - 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(a* 
b*c^2 + a^2*c*d)*x)/x^2) - 4*(16*a^4*c^4 - (3*a*b^3*c^4 - 11*a^2*b^2*c^3*d 
 - 11*a^3*b*c^2*d^2 + 3*a^4*c*d^3)*x^3 + 2*(a^2*b^2*c^4 + 22*a^3*b*c^3*d + 
 a^4*c^2*d^2)*x^2 + 24*(a^3*b*c^4 + a^4*c^3*d)*x)*sqrt(b*x + a)*sqrt(d*x + 
 c))/(a^3*c^3*x^4), 1/128*(3*(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 
- 4*a^3*b*c*d^3 + a^4*d^4)*sqrt(-a*c)*x^4*arctan(1/2*(2*a*c + (b*c + a*d)* 
x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2*c^2 + (a*b*c^ 
2 + a^2*c*d)*x)) - 2*(16*a^4*c^4 - (3*a*b^3*c^4 - 11*a^2*b^2*c^3*d - 11*a^ 
3*b*c^2*d^2 + 3*a^4*c*d^3)*x^3 + 2*(a^2*b^2*c^4 + 22*a^3*b*c^3*d + a^4*c^2 
*d^2)*x^2 + 24*(a^3*b*c^4 + a^4*c^3*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a^ 
3*c^3*x^4)]
 
3.7.14.6 Sympy [F]

\[ \int \frac {(a+b x)^{3/2} (c+d x)^{3/2}}{x^5} \, dx=\int \frac {\left (a + b x\right )^{\frac {3}{2}} \left (c + d x\right )^{\frac {3}{2}}}{x^{5}}\, dx \]

input
integrate((b*x+a)**(3/2)*(d*x+c)**(3/2)/x**5,x)
 
output
Integral((a + b*x)**(3/2)*(c + d*x)**(3/2)/x**5, x)
 
3.7.14.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+b x)^{3/2} (c+d x)^{3/2}}{x^5} \, dx=\text {Exception raised: ValueError} \]

input
integrate((b*x+a)^(3/2)*(d*x+c)^(3/2)/x^5,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for m 
ore detail
 
3.7.14.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3832 vs. \(2 (163) = 326\).

Time = 1.72 (sec) , antiderivative size = 3832, normalized size of antiderivative = 19.06 \[ \int \frac {(a+b x)^{3/2} (c+d x)^{3/2}}{x^5} \, dx=\text {Too large to display} \]

input
integrate((b*x+a)^(3/2)*(d*x+c)^(3/2)/x^5,x, algorithm="giac")
 
output
-1/64*(3*(sqrt(b*d)*b^5*c^4*abs(b) - 4*sqrt(b*d)*a*b^4*c^3*d*abs(b) + 6*sq 
rt(b*d)*a^2*b^3*c^2*d^2*abs(b) - 4*sqrt(b*d)*a^3*b^2*c*d^3*abs(b) + sqrt(b 
*d)*a^4*b*d^4*abs(b))*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a 
) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b 
*c*d)*a^2*b*c^2) - 2*(3*sqrt(b*d)*b^19*c^11*abs(b) - 35*sqrt(b*d)*a*b^18*c 
^10*d*abs(b) + 161*sqrt(b*d)*a^2*b^17*c^9*d^2*abs(b) - 385*sqrt(b*d)*a^3*b 
^16*c^8*d^3*abs(b) + 494*sqrt(b*d)*a^4*b^15*c^7*d^4*abs(b) - 238*sqrt(b*d) 
*a^5*b^14*c^6*d^5*abs(b) - 238*sqrt(b*d)*a^6*b^13*c^5*d^6*abs(b) + 494*sqr 
t(b*d)*a^7*b^12*c^4*d^7*abs(b) - 385*sqrt(b*d)*a^8*b^11*c^3*d^8*abs(b) + 1 
61*sqrt(b*d)*a^9*b^10*c^2*d^9*abs(b) - 35*sqrt(b*d)*a^10*b^9*c*d^10*abs(b) 
 + 3*sqrt(b*d)*a^11*b^8*d^11*abs(b) - 21*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a 
) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b^17*c^10*abs(b) + 178*sqrt(b*d 
)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a*b^16 
*c^9*d*abs(b) - 561*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x 
 + a)*b*d - a*b*d))^2*a^2*b^15*c^8*d^2*abs(b) + 856*sqrt(b*d)*(sqrt(b*d)*s 
qrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^3*b^14*c^7*d^3*abs 
(b) - 698*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d 
- a*b*d))^2*a^4*b^13*c^6*d^4*abs(b) + 492*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + 
a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^5*b^12*c^5*d^5*abs(b) - 698* 
sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d...
 
3.7.14.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b x)^{3/2} (c+d x)^{3/2}}{x^5} \, dx=\int \frac {{\left (a+b\,x\right )}^{3/2}\,{\left (c+d\,x\right )}^{3/2}}{x^5} \,d x \]

input
int(((a + b*x)^(3/2)*(c + d*x)^(3/2))/x^5,x)
 
output
int(((a + b*x)^(3/2)*(c + d*x)^(3/2))/x^5, x)